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ABSTRACT

This report gives a summary of the projects conducted
during the last year under the contract Research in Seis-
mology. These investigations fall roughly urder three
broad headings: (1) Theoretical studies ¢of source mech-
anisms of earthquakes and underground nuclear explosions;

(2) Earth structure and path effects, especially the effects
of lateral heterogeneities in velocity and in Q; (3) Studies

of the capabilities of arrays for event detection and loca-

tion. Lists of publications and theses completed during the

Ycontract year are also included.
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b SUMMARY

In this annual report we review the work completed
under the contract Research in Seismology during the year
1 April 1972 through 31 March 1973. Within the broad guide-
lines of the problem of discriminating earthquakes from
underground nuclear explosions, we have conducted a number
of specific investigations of seismic sources and seismic-
wave propagation.

The topics studied can be grouped under three broad
headings:

(1) Source mechanisms of earthquakes and explosions,

(2) Earth structure and path effects,

(3) Array studies.
In the following sections we present abstracts of papers
published or soon tu be published that fall into each
category. Recently completed work is discussed in fuller
detail. We also include lists of all publications and
theses supported under this project during the contract year.

Several theoretical approaches to seismic source mech-
anisms have been followed. Y. Ida has pursued further his
propagating-crack model for earthquake rupture. The model
has the advantage that it links seismic observations such

as riear-field acceleration to physical properties of rocks

such as static and dynamic friction. Variations in the
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parameters used to formulate the boundary condition across
the fault plane can explain the transition between stick-
slip and stable sliding observed in rock failure, the dis-
similarity in the amplitude spectra of large and small
earthquakes, and rates of seismicity along faults.

A number of related theoretical seismic source models
were constructed by S. Singh. His approach was to super-
pose point forces along some boundary in a medium of speci-
fied elastic or viscoelastic properties and to solve for
the resulting displacement and stress fields. Among the
interesting results of his studies are the demonstration
that apparently torsion-free sources can generate SH-type

waves and that the effects of viscoelasticity can signifi-

cantly alter the displacement of stress fields for certain
kinds of favlting from those calculated assuming perfect
elasticity.

A rumber of advances were made toward inverting normal-
mode and travel-time data to infer models of earth structure.
Bounds on shear velocity and density in the mantle and core
were obtained explicitly by C. Johnson using a new linear
programming technique. 1In a related work, Wiggins, McMechan
and Toksdz developed a procedure, based on the Herglotz-

Wiechert integral, for direct determination of the envelope

of possible body-wave velocities in the mantle and core.
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Both of these studies have both clarified the limits of
uncertainty in current earth models and pointed toward new
data sets that would improve present constraints.

A major focus of our attention has been directed toward
understanding lateral as well as radial variations in earch
structure. As a consequence of a P-wave travel-time study
using waves from deep earthquakes to minimize near-source
heterogeneity, M. Sengupta and B. Julian noticed systematic
differences in deep-mantle travel times for various paths.

A lateral variation of P-wave velocity in the lower mantle
of at least 1 percent is required.

The anomalous patterns of travel-time dclays and ampli-
tude variations across LASA have been recognized for some
time. K. Aki has shown that this may be attributed to
scattering by rardom velocity fluctuations in the crust
beneath the array. The scattering is quite severe and the
simple Chernov theory which fits the observations at lower
frequencies (.5 Hz) is inadequate at higher frequencies
(> L Hx).

The theory of plate tectonics has led to the recognition
of a number of specific heterogeneities in earth structure,
in particular the regions in the vicinity of plate boundaries

at spreading certers and at subduction zones. When seismic

sources are located in such regions, the effects on the




propagation of body waves can he pronounced. S. Solomon

has demonstrated the striking azimuthal dependence of shear-
wave spectra from earthquakes near ridges due to a localized
2zone of very low Q in the uppermost mantle beneath the
ridge crest. M.N. Toks8z and his colleagues N. Sleep and

A. Smith have further pursued their models of temperature
and stress in subducted slabs of lithosphere. Current
models successfully explain the travel-time and amplitude
anomalies associated with shallow earthquakes and explosions
on island arcs and the distribution and focal mechanisms

of deep, intra-slab earthquakes.

The efficient utilization of the large aperture seis-
mic arrays LASA and NORSAR has long been one of our continuing
interests. 1In his Ph.D. thesis and later work, S. Shlien
has made extensive statistical studies of the capability of
the combined arrays for on-line signal detection and event

location. 8




2. SOURCE MECHANISMS OF EARTHQUAKES AND EXPLOSIONS

2.1. Stress Concentration and Unsteady Propagation of Longi-

tudinal Shear Cracks by Y. Ida (Abstract)

Unsteady propagation of a longitudinal-shear crack is
studied through numerical calculation for better understand-
ing of frac*ure and earthquakes. The relation which formu-
lates rupture velocity as a function of stress intensity is
used to describe the fracture process at the crack tip. The
effects of creep and frictional slidings are taken into
account by assuming a suitable form of the slip-velocity
dependent boundary condition. In this model, stress accumu-
lation takes place through creep, and then the crack begins
to grow, controlled by the dynamic friction across the crack
surface. It is shown that the motion of the crack tip is
either smooth or bumpy, depending on the parameters of the
boundary condition. The brittleness and ductility of mate-
rial are interpreted by these two types of crack propagation,
and this interpretation is qualitatively consistent with the
experimental results on brittle-ductile transition induced
by the temperature, the confining pressure, and the pore
pressur.. It is shown that the presence of smooth and bumpy

crack propagations might give a possible explanation on the

dissimilarity between large and small earthquakes, pointed
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out by Aki. This model also suggests a method of estimating

the recurrence period of earthquakes, based on the crustal i

deformation across the fault.

2.2 Cohesive Force and lnsteady Piupagation of a Longi-

tudinal-Shear Crack by Y. Ida (abstract)

The dynamic propagation of a longitudinal-shear crack
is studied to form a model of fracture that has some physi-
cal basis. The stress field around the crack tip is analyzed

in detail, .Jder the assumption that the cohesive force is

given as a function of the displacement discontinuity. This
analysis yields a fracture condition which turns out to be
equivalent to the energetic criterion, but the meaning of
specific surface energy is made clearer. The stress distri-
bution in the vicinity of the crack tip is demonstrated for
several models of cohesive force diagrams. It is assumed
that the slip velocity-~dependent boundary condition, which

includes the effect of creep and the static and dynamic

frictions governs the semi-infinite fault plane except for
the infinitesimally small end-region associated with cohe-
sive force. Based on these formulations of the fracture
and boundary conditions, the crack growth is calculated

r.umerically. 1In this model, the stress accumulation first

“i1kes place through the creep over the whole fault plane,




and then the crack begins to grow, accompanied by the for-

mation of the crack surface having the dynamic friction.

It is shown that the crack tip is either "smooth" or
"bumpy," depending on the parameter of the boundary con-
dition. Smooth propagation is associated with the rapid
expansion of the crack surface, while the bumpy propagation
only produces the crack surface on the restricted area
adjacent to the crack tip. The brittle and ductile frac-
tures of the material are interpreted by these two types

of crack propagation, and this interpretation successfully
predicts the brittle-ductile transition induced by the

temperature, the confining pressure, and the pore pressure.

-

2.3 The Maximum Acceleration of Seismic Ground Motion

by Y. Ida

Abstract

The near-field particle motion is evaluated on the
basis of the idea that the initial shape of the seismic
source function should be determined by the fracturing

process in the rupture front. The effect of the cohesive

force on the source function is examined in detail, and the

following relations are derived for the maximum velocity
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“M and the maximum acceleratior ﬁM; UM o (co/u)c and

s o~ 2 ‘2 2 1 3 13
tM (6 /u)“(c®/D), where o, is the strength, D_ is
the displacement discontinuity required for the fracture,
¢ 1is the rupture velocity and u is the rigidity. If

the strength of rock is assumed to govern the earthguake

rupture (o_ - 1 kbar and D_~ 10 c¢m), reascnable valuc:
o o

are obtained, as 6M ~ 100 cm/s and UM ~ 1 g. The peri :!
and the dimension associated with the large particle accel -
eration "are roughly 0.1 sccond and 100 meters, respectively,
urder the above assumoption. This result suggests tle poss.-

bility that eartaguake hazerd nmay be predicted from the mecl.-

arical propercy of rocks.




INTRODUCTION

In the vicinity of a seismic fault, it is expected
that the ground motion 1is primarily governed by the fault-
slip time function rather than the geometry and size of
the fault plane. For the purpose of engineering seismology,
it is thus very important to determine tl.. accurate form
of the fault-slip time function. Brune (1970) proposed a
simple model of seismic source, assuming that the slip
motion occurs instantaneously over the whole fault plane.

In his model, the particle motion is related to the pre-
existing stress field. It is physically more natural,
however, to regard the earthquake occurrence as spontaneous
rupture propagation associated with '"e stress concentration
in the rupture front. If this is the case, the rupture
cannot propagate supersonically, and Brune's time function
is no longer applicable (Ida and Aki, 1972).

In the case of a subsonic rupture propagation, the
entire form of source function involves several complicated
effects, such as the initial state of the displacement
field, and the dynamic processes of fracture and friction.
1f we restrict our consideration to the initial rise of

source time function, however, the analysis can be made
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more simply. For this purpose, we may focus our attention
on the vicinity of the crack tip, since the effect of high
stress concentration is so dominant there that the displace-
ment field is almost determined by the material strength
alone (Ida, 1972). The known solutions of dynamic crack
propagation (Yoffe, 1951; Broberg, 1961; Kostrov, 1966)
have a singularity of particle vilocity or acceleration

at the rupture front. This means that the initial form

of source function corresponding to tie ruptire front gives
the most important contribution in the estimation of the
maximum velocit, and acceleration of the near-field ground
motion. 1ln this paper, we estimate these quantities, bhased
on the analysi:. of cohesive force at the crack tip (Ida,

1972).

COHESIVE FORCE AND P'ARTICLE MOTION

The singularity at the crack tip is eliminated by
considerin: an ine c¢stic property of material in the tault
plane near the tig. Accovding to Barenblatt (1959), the
inelasticity is formulated by the "cohesive force" that

works across the crack tip against the fracture. Let us
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assume that the cohesive stress LS is given as a function
of the displacement discontinuity D across the fault plane.
The relation oc = oc(D) is usually called the "cohesive
force diagram". The direction of D relative to the geo-
metry of the fault planc depends on whether the crack is

of plane shear, tensile, or longitudinal-shear type, and
oc(D) is generally a different function for the different
types of crack. T!~ displacement discontinuity D is an

unknown function of time t and space coordinate x We

1°
here choose as Xy the coordinate axis that is placed
along the fault plane, perpendicularly to the crack edge
which is assumed to be an infinite line. The form of D
in the vicinity of the crack tip is determined for a given
cc(D), as has been studied in tle case of the longitudinal-
shear crack (Ida, 1972). The same discussion is also
applicable to plane shear and tensile cracks, simply by
replacing the factor involving the rupture vclocity [see
eqa. (7a), (7b) and (7¢)].

To obtain practically useful expressions for particle

motion, we introduce a "normalized" cohesive force diagram

o(¢), as

oc(D) = oo-o(D/Do) (1)




=} 2=

The constants 0, and D, are the representative values

of stress .ud displacement. Let us choose as 0, the stress
of elastic limit (which is approximately equal to the
yield strength), and as D, the displacement required to

break down the cohesion. Then we have

o(0) v 1

o(¢) v 0 for ¢ 2 1 (2)
If 0(¢$) is given, a normalized displacement discontinuity ¢
is determined as a function of a normalized coo.dinate X
(Ida, 1972). The non-normulized displacement discontinuity
D is obtained from the scaling relation [eq. (17) of Ida
(1972)1, as

D = D°¢[—k(xl = ety (3)
with the expression of X in terms of space and time:

X = —k(x1 = cit) (4)
llere ¢ s the rupture velocity (¢ > 0),and k is defined by

k = (327/7H) (0,/D,C) (5)

where W is the rigidity, and Y is the normalized specific

T T TR TN A TR vy we
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surface energy, i.e.,

ve= (l/Z)J o(e)d¢ (6)
o

The dimensionless constant C in (4) is a universal
function of c¢. In the case of the longitudinal-shear
crack, C 1is simply (Ida, 1972):

(1 - c2/82)l/2

O
[}

(7a)
where g 1is the shear-wave velocity. For the other types
of cracks, C also involves the longitudinal-wave velocity
a. According to Weertman (1969), we have
C = a/0)%1 - 2/8H V211 - 2?1 - e
- (1 - c%/28%) 2 (7b)
for the plane shear crack, and

C = 4(B/c)2(l - cz/az)-l/zl(l - c2/a2)(l - c2/82)

- (1 - c?/28%)2 (7¢)
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for the tensile crack.

In fact, the anature of cohesive force is not known
very well experimcntally nor theoretically. Here we
try to estimate roughly the effect of g, and D, on the
particle motion without detailed information on cohesion,
remembering that the variation of o(¢) is greatly restricted
by (2). This kind of crude appéoximation is practicully
useful, because tle parameters o, and D, can be estimated
more easily, even if it may be difficult to determine the
complete form of cohesive force diagram.

on the fault plane, the displacement u is related

to the source function D, as
u= (1/2)0 (8)

and thus the pariicle velolity & and acceleration U are

readily cotained from the ranction ¢;

v (1/2YD kay’

. 2 2
B o= (1/2)Dk c"¢"
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where ¢' and ¢" denote the derivatives of ¢ with respect
to X. If the function ¢'(X) has the maximum value ¢M'
at a point X = XM’ we have the following expression of

the maximum particle velocity GM:

QM = (16Y¢M'/")(OOC/UC) (9)
Here let us choose the origine of X so that ¢ (0) = 0.

By calculating ¢ (X) for several models of cohesive force
diagram o (¢), it was shown that ¢'(X) actually has a
maximum (Ida, 1972). The first five model. in Table 1
cover the results in this calculation. In model 1,9'(X)
is infinite at X = X,, since 0(¢$) is discontinuous at

$ = 1. 1In this model, the infinity of ¢M' is clearly
caused by the artificial choise of o(¢). For the other
models, ¢M' shows a finite value around unity in spite

of the differences in details of the curves o(¢). Roughly
speaking, the dimensionless factor 16y¢M'/n in (9) is

thus expected to be of the order of the unity. From (4)

and (5), we define Xy and tM as

g
|

M

(MXy/32Y) (Do /0,C) (10)

ty, = xM/c (11)
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which give the dimension and duration associated with large

particle velocity. 1In the same manner, we have the maximum ]

\
acceleration ﬂM, if ¢"(X) has a maximum ¢“M:

C B Ll 2
iy = (512y7¢,"/7%) (o, ¢ /uD_C)°p, (12)
In fact, ¢"M is infinite for all the models 1 through 5

in Table 1. The behavior of ¢"(X) 1is thus examined in

more detail in the next section.

SINGULARITY IN ACCELERATION

In the models 1 “hrough 5 in Table 1, ¢"(X) is

proportional to x~1/2

in the vicinity of X = 0, and
not finite at X = 0. Furthermore, ¢"(X) is also in-
finite at the point ¢ = 1 in some models (1, 2, 4 and 5).
Of these two singularities, the behavior around ¢ =1
simply reflects a more or less unsmooth connection of 0 (9¢)
at this point; we arbitrarily assumed that 0(¢) vanishes
for ¢ > 1. Since the function ¢'(X) 1is given by the

Hilbert transform of 032(X) = gl¢(X)] (1da, 1972), ¢"(X)

is finite at ¢ =1 if o0'(¢4) is continuous there. This

condition is actually satisfied in model 3.
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To study the behavior of ¢(X) in the vicinitv of
X = 0, we rewrite the relation between ¢'(X) and
032(X) given in Ida (1972), as
' (X) = -(xl/2/16y)J (¥ - 0 200 - oy, (017
o

(13)

From (13), it is readily found that the following relation
is necessary s» that ¢"(X) may be finite at X = 0:

o
J v 210,,(y) - 04,(0)1dy = 0 (14)
o
Let us demunstrate through numerical calculation that
" (X) can actually be finite at X = 0, if a suitable
function is chosen as 0(¢). We consider the following

cohesive force diagram, for e ample;

A
S
A
>

[aw + 1) (0 - 2)2 0

o(¢) = (15)
lo

putting a =2 and 1 + 21 = 1.5 in (13), we keep 2
as an independent vaiiable. The examples of the curve
o(¢) are given for several values of & 1in Fiq. 1.

Since o¢'(¢$¢) in (1l5) is continuous at ¢ = L, ¢"(X)

is finite except at X = 0 for any value of &. The
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distribution of ¢ (X) can be obtained in the same manner

as described in Ida (1972). Fig. 2 shows the result for
¢'(x). When ¢ is larger, the peak shifts to the rigyht,

and the ste~ 5 rise of the curve around X = 0 is gradually
removed. Firnally, at § = 1.37, the condition (14) is
approximately met, and ¢'(x) 1ncreases smmothly at X = o
within the error of numerical calculation. The distribution
of ¢" (&) is given in Fig. 3. Corresponding to the behavior
of ¢'(X), ¢"(0) approaches zero in the case of g = 1.37.
The cohesive force diagram for ¢ = 1.37 is denoted by

Model 6 in Table 1.

Naturally, the cohesive force diagram that is physically
realizable must give finite particle acceleration everywhere.
Therefore we understand that the condition (14) is a
physical requirement for o (¢). For such ¢ (¢) that satisfies
(14), eq. (12) may be used in the estimation of the maximum
acceleration. The condition (14) is regarded as the
criterion to determine the critical stress o(0), or oc(O),
above which the deformation is locallyv so concentratecd
that the displacement discontinuity appeers along a crack

surface in the continuous medium.

R
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THE EFFECT OF DISTANCE FROM THE FAULT

When the observation point is not situated on the
fault plane, the particle motion is generally affected
by various factors of the soirces, such as the dimension
of the fault plane and the starting or stopping phases
of rupture, other than the sourée-time function. For a
distance that is sufficiently smaller than the source
dimension, however, the stress field may still be approx-
imated by our simple 2-dimensional crack model, and we may
estimate how the particl motion attenuates in the near
field. 1In this section, we consider this effect of dis-
tance in the case of the longitudinal-shear crack. For
the other types of cracks, the mathematical treatment will
be a little more complicated.

For the two-dimensional longitudinal-shear crack, the

displacement u is given at an arbitrary point (xl,xz)

(Ida and Aki, 1972) by

o

sz Ly

- 00

1/2 2

w= (/211 - c2/8?) + (- c%/8hx,2

-D(xl - ct - Xy )dxl (16)

where the coordinate x2

iS perpendicular to the fault

=)
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plane and thus [x2| is the distance from the fault
plane. Corresponding to (3) and (4), we introduce the
normalized displacement U with the normalized coordinate

X as

2I

U = u/Do ‘ (17)

xz = (32Y°0/"HDO)X2 (18)

Because of the symmetry of the problem, we have only to
consider the positive side of xz. The particle velocity

. " .
u and acceleration u uare derived from U, as

c
]|

Dokc(aU/BX) (19)

ookzcz(a’-u/axz) (20)
and thus the relative attenuations of u and u are given

by 9U/3X and 82U/3X2 as a function of x2. For the
numerical calculation, the following relation that is

derived with the use of eq. (10') in the paper of Ida

(1972) is more convenient than (16):

e T T T T N T W e NEDOT umpemrn e
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3U/3X = (1/4) (2R) 172

{1 + X/R)l/2

[}

- (1/8Y)J [(1 - x/r) Y2
(o]

L+ (L x/R) Y2y - %))

2,=1

Y20 - 0%+ x4 (nay) (21)

2 %3

where

The function 032(Y) dcnotes the stress on the fault plane
(at X2 = 0). The results of the calculation are shown in
Figs. 4 and 5 for model 6 of o(¢). These figures give the
distribution of 23U/3X and 820/8x2 as a function of X

at various points of X2. The maximum values of the nor-
malized velocity and acceleration are listed for various
values of x2 in Table 2. We may find that the acceleration

" o), 48 . . .
u decreases rapidly with increasing X and becomes much

2I
smaller than ¢M" when X2 exceeds XM. Therefore the
length XM defined by (10) approximately gives the distance

within which we expect as large an acceleration as on the

fault plane. It is emphasized that the rcsult of Table 2

involves only the effect of time function and does not explain

the actual ground motion for very large distances.

T T T - s
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ORIGIN OF STRONG GROUND MOTION

1t has been shown that the cohesive force diagram
. ) determines the faulc¢-slip time fu.ction at the initial
stage, and yields the expressions (9) and (12) for the max-
imum velocity U, and acceleration U, on the fault plane.

M M

For a rough estimation, we may drop numerical factors in-

volving v, wM' and ¢M", and we have
uy - (Co/”)c (22)
200 2
Uy (oo/u) (c /DO) (23)

In a similar manner, we obtain the following approximate
relations from (10) and (11):

Xy ~ (u/oo)Do (24)

ty ~ (U/UO)(DO/C) (25)

Let us try to substitute the values of L and Do cor-
responding to the following two mechanisms of cohesion:
(1) interatomic interactions (oo ~ u and DO ~ 184,

and (2) the gross strength of rocks broken by the




displacement comparable with the thickness of the seismic
fault (00 ~ 1 Kbar and Do ~ 10 cm). The results of

the estimation are given in Table 3. In the first case,

we have very large velocity and acceleration, but the
duration or dimension associated with these high values

is too small to account for seismic observations. 1In the
second case, we have the velocity of 1 m/s and the
acceleration of 1 g, which are acceptable values (Brune,
1970; Cloud and Perez, 1971). The associated time scale

t of 0.1 second is also reasonable in view of the observed

M
strong motion spectra.

The results for GM and GM in the second case agree
with similar estimates made by Brune (1970). It is emphasized,
however, that the physical bases for the estimation are dis-
tinclly different in the two studies. In our treatment,
the maximum particle motion is determined by the material
property concerning the strength against fracture, while
the particle velocity or acceleration is governed by the
ambient effective tectonic stress in Brune's model. In
addition, the predominant frequency of 10 cycles is
arbitrarily assumed in Brune's estimate, but it was obtained
in our study. Finally, our treatment is applicable to sub-

sonic rupture propagation, while Brune's estimate is valid

for a supersonic propagation which is not realistic for a



spontanecus rupture (Ida and Aki, 1972).

The result in Table 3 suggests that maximum seismic
motion may not be directly related to atomic bonding, but
rather governed by the bulk strr-ngth of rocks. The values

of % and DO in the second case yield the specific sur-

face energy of 1010 erg/cmz, whicl, 1s much larger than the

laboratory measurements 103 erg/cm2 for rocks (Brace and
Walsh, 1vé2). Such a large value of the specific surface
energy for an earthquake was also obtained independently
from the information on the time during which the rupture
velocity approaches the upper limit (Kikuchi and Takeuchi,
1970). This problem should be examined more carc fully
because of the importance of specific surface energy in
the fracture phenomena.

The factor C specified by (6) is neglected in the
approximate relations (22) and (23). This assumption is
valid, unless the rupture velocity ¢ 1is close to the
critical sound velocity, i.e., the shear-wave velocity
for the longitudinal-shear crack and the Rayleigh wave
velocity for the plane shear or tensile cracks. In many
cascs, the observed rupture velocity appears to be sub-
stantially smaller than .he critical value (see Table 3
in Abe, 1972), even for deep-focus earthquakes (Fukao,

1972). 1In such cases, our rough estimition of Uy and




ﬂM is not influenced very much, even if the factor C

is taken into account. According to a theoreticla cal-

culation of dynamic crack propagation, the rupture

velocity approaches the critical sound velocity (Kostrov,

1966) . One possible explanation of the discrepancy

between theory and observation is given by the dependence

of 4 on c. According to (9), U should be infinitely
large if c were the critical sound velocity. 7Tnis
suggests that the energy loss associated with U, such
as heat generation,would be enormous at the critical
sound velocity, and that c is not easily increased
unless such enormous energy is supplied. In other words,
it is expected that the theory might give the correct
observation of rupture velocity, if the energy dissipation
is taden into account.

For the practical purpose, it is highly desirable
to predict the ground motion in more detail for individual
event. At present, uncertain knowledge of the cohesive
force diagram prevents us from determining more accurate
values of the coefficients in (9) to (12). Therfore
better estimate cannot be made only by giving more suitable
values for go,, Do, p and c. An ecxpedent way to overcome

this difficulty might be to regurd these cocfficients



T

as empiricual parameters. It is another problem whether
such large faulting as earthguake can be well described
by the cohesive force diagram. Further theoretical and

experimental studies are necessary to clarify chis point.
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TABLE 1

The maximum ¢M' of the normalized particle velocity

$'(X) on the fault plane for given models of cohesive

force diagram o (¢)

1
1-¢
(1-¢)2
(1-9) (1+2¢)
(1_¢2)1/2

2(¢+0.13) (¢-1.37)2

* S{(¢) = 0 for $ > 1 1in the models

» > 1.37 1in model 6.
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TABLE 2

rhe maximum values of the normalized particle velocity

0U/3X and acceleration BZU/sz as a function of the

distance X from the fault plane for model 6

2 :
X,  Max(3U/dX) Max (32u/3x%)  Min(22u/ax%%)
0 0.290 0.16 -0.13 .
0.1 0.266 0.14 -0.10 :
0.5 0.212 0.085 -0.048 i
1.0 0.173 0.053 -0.024
5.0 0.0873 0.0087 -0.0028 1
10.0 0.0624 0.0033 -0.0010 |
50.0 0.0280 0.00031 ~0.000091

100.0 0.0198 0.00011 -0.000032 1

P e T T T ey



Assumed*

ObtainedT

* u ~ 1 Mbar and

' Egs. (22), (23),

TABLE 3

The maximum velocity u and acceleration

M

the assumed mechanisms of fracture

1. Atomic Cohesion

1 Mbar

18

lOscm/s

20

10 cm/s2

10-185

2. Strength of Rocks

1 Kbar

10 cm

1 m/s

lg

0.1 km

0.1 s

c ~ 1 km/s .2 commonly assumed.

(24) and (25) are used.
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IGURE CAPTIONS

Fig. 1 The models of cohesive force diagram given
by eq. (15), in which a = 2 and L + 2, = 1.8
are assumed. The number attached to each curve
denotes the value of %.

Fig. 2. The distribution of ¢'(X) for the models of
cohesive force in Fig. 1. The number attached
to each curve denotes the value of g.

Fig. 3. The distribution of ¢"(X) for the model. of
cohesive force in Fig. 1. The number attached

to each curve denotes the value of £.

Fig. 4. The normalized particle velocity yU/3X at
various distances X, from the fault plane.
X may be regarded as the coordinate along the
fault, or the time, referring to (4).

Fig. 5. The normalized particle acceleration
aZU/aX2 at various distances X2 from the fault
plane. X may be reqgarded as the coordinatce along

the fault, or the time, referring to (4).
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2.4 Generation of SH-Type Motion by Torsion-Free Sources

by S.J. Singh

Summary

| The problem of a spherical cavity in an infinite

4 medium is re-examined. The spectral displacement and
strcss fields are derived when arbitrary tractions are
prescribed over the surface of the cavity. This also
yields the solution of the problem of the release of pre- !

existing stress within a spherical zone. The particular

case when the radius of the cavity is small in comparison .
with the wavelength under consideration is discussed in
detail. The nature of the tractions are obtained which,

when applied at the surface of the cavity, yield the

same displacement field as radiated by various point
sources. hquivalent body forces are obtained for the
release of pre-existing tensile and shear stresses
within a spherical zone of small radius. In the course
of the analysis, it is shown that an apparently torsion-

free source is capable of generating SH-type motion.
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INTRODUCTION

With regard to a given spherical polar coordinate
system, the motion at a given point may be resolved into a
toroidal part and a spheroidal part. For the toroidal
part, the radial component of the displacement and the
dilatation vanish identically. For the spheroidal part,
the radial component of the curl of the displacement is
zero. Suppose we shift the origin of the coordinate sys-
tem along the polar axis. A motion which is of the toroidal
type with respect to the old system will, in general, contain
both the toroidal and the spheroidal parts with reference
to the new system. This becomes obvious by observing that
even if the radial component of the displacement vanishes
in the old system, it may not vanish in the new system.
However, if the motion has azimuthal symmetry, toroidal
motion has only an azimuthal component while the azimuthal
component of the spheroidal motion vanishes. Tn this
special case, when the origin is shifted along the polar
axis, the toroidal motion stays toroidal and the svher-
oidal motion stays spheroidal.

The realization of the above property is very rmportant

when considering the field radiated by a given source. It
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shows that an apparently torsion-free source is capable of

exciting SH-type motion.
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SPHERICAL CAVITY IN AN INFINITE MEDIUM

Consider a homogeneous, isotropic, elastic medium of i
infinite extent containing a spherical cavity of radius a.
Let the center of the cavity be the origin ot a spherical

polar coordinate system (R,0,¢). Our aim is to calculate

the radiated field when the tractions are prescribed over
the surface of the cavity. Since the motion must vanish
at infinity, we assume the following expression for the

displacement at any point of the medium

o L

z z X v FV
v=c,s 2=1 m=0 [aszmR,(k

(=L
"

vV 2V
BR) + Bmszz(kBR)

AV oV} e *€
% leLml(kaR)] + YgoLgo (kR ¢ (1)
where a;z, etc., are arbitrary constants; ka = w/a,
kB = w/B, w being the angular frequency and a,B the wave

velocities., ﬁ, N and 1 are the solutions of the vector

Navier equation. These may be expressed in the form

MYy (KgR) curl [R hy (kgR) Y, (0,4)]

; Vv
/ITT + DT, (0,8) hy(kgR), (2)




- PP N———— R VT WIS T g —

-42-

v - v
ksﬁmz(kBR) = curl ﬁml(ksR)

gY
2(2+1) By, (6,6) hy(kgR)/R

v d 1l
+ /D) BY,(0,0) (zg + ) By kgR) s (3)
Vv = \V
kafmz(kBR) = gradlh, (k R) YD, (0,0)]

v d
= 3m2(e,¢) 3r Dy (K R

\Y
; + /ITFD) BY (6,4) hy(k RI/R.  (4)

In (2) to (4), h2 is the spherical Hankel function of the

second kind and

c,s L oM ;
Yie (0,¢) = Pz(cose)(cosm¢,51nm¢),
B (0,0) = & Y ,(0,0), (5)
/T (+1 5 + 3 > 1 3
2 (2+1) §m2(01¢) = [eem + e¢81n 5-3-] Ym2(0,¢),
139 5

->
[ Osin® 3¢ e¢a@] Yng (€0 9).

:

/I & (0,4)

The radial stress vector is given by

b

| 'fR = AER div :1 + p(2-§§ + E—;Rxcurl-ﬁ) , (6)
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where ).y are the Lamé parameters. Inserting for 4 from (1),

we find (Ben-Menahem and Singh, 1968)

L )
- AN >\
f.o= & I © la_,(RVETEFD) C ,(0,¢)

v=c,s =1 m=0

+ B (RBY (0,0) + T), (RIVITT) By (0,0)]

+ B5o (RIBG (0,0), (T

where

| “mz(R) = uan lel(n) G
Bg (R = 2nl (DR F n) By + K Fo 508y, ], (8)
with £ = kaR’ n = kBR and
. _o2-1 o - kg
By e = ':Ehz“‘) % Nae1 (X
- 8. .0 2
FE,Z(X) E [;5-(2. ~1) - 1} h (x) + = h2r+l(X), (9)
Fo a0 = [502-1) - %(%} ] hy(x) + 2 hy, (x).
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Let the tractions at the surface of the cavity be given

by

%R = 7(0,4) at R = a. (10)

-5
we expand F(0,¢) in terms of the vector sphericil harmoniCs:

© 2
Blo, 0 = & I T2 AT &),(0,0)

v=C,s =1 m=
v 2V \ *V
+ bmﬁm(e,m + o VITIFT) B, (0,0)]

+ b80380(6,¢) g (11)

Given F(0O,¢), the expansion coefficients a g0 €tc., can be
obtained with the help of the orthogonality relations for
the vector spherical harmonics (Morse and Feshbach, 1953;

p. 1900). Equations (7), (10) and (11) yield

amz(a) = amzl Bmz(a) x bmzl sz(a) = cmz . (12)

Putting R=a in (8) and using (12), we can find LIy etc., in

terms of the known expansion coefficients a e’ etc. We get

aml

= amz/[uksx Fz,l(x)]'




T T N TSN ——

e & P — - T PR ——— g —s L5

-45-

el 1 x
Bmk = ﬁEEKZ [Fl,l(C)bmk F2'3(C)Cm2]' (13)
E 1 L
Y2 T EEE;K; [22(2+1)F2'1(X)Cm2 F2,2(x)bm2]'
where
g = aka, X = akB, and
b, = 22(2+1)F2'1(5)F2'1(x) = Fz'z(x)FzJ(c). (14)

This gives the formal solution of the problem of a
spherical cavity in an unbounded medium when the tractions
are prescribed over the surface of the cavity. An equivalent
solution was obtained by Scholte (1962). However, due to the
difference in notation, a comparison of the results seems
difficult.

It is seen from (13) that the original problem splits
into two independent problems, one with bmk = cml = 0 and
the other with amg = 0. The motion is of the toroidal type
in the former case and of the spheroidal type in the latter
case. We thus arrive at the conclusion that when the trac-

tions are of the toroidal type, ensuing motion in a homogene-

ous, isotropic, unbounded medium is of the toroidal type.

Similarly, spheroidal tractions lead to spheroidal motion.
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At this point, it may be noted that when we talk about
toroidal or spheroidal type field, we always have a spherical
polar coordinate system in our minds. In the above case,

[ it is the (R,0,¢) system with its origin at the center of

I the cavity. On the other hand, the toroidal and spheroidal
motions measured at the surface of the earth ought to be
with reference to a coordinate system having its origin at
the center of the earth. The coordinates in the latter
system are denoted by (r,0,9) as shown in Fig. 1. The two
systems have the same polar axis and r, is the distance of
the center of the cavity from the center of the earth. The
important point to be observed is that, in general, a

toroidal or spheroidal type motion with respect to the

(R,9,¢) system corresponds to toroidal plus spheroidal type

motion with respect to the (r,9,¢) system. This becomes

clear from the following transformations which express ﬁ, N

and E vectors in the (R,0,¢) system in terms of these vectors
in the (r,9,¢) system (Wason and Singh, 1971):
[« -]

I M L
; Mg (kgr) [Ep (kgro)

M__(k,R) =
mn B8 L=m

(L-m)k,r r (24m+1) kpor
= 'IT?I:%Tgﬁénl‘ksro) B TIIITTEIgng;;l‘kBro)]

- 1 kg

'3 >,
f=m TTL+17Emn (KgTo) Nmg (kgT) . (15)
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< o 2'
zim le(ker) [Emn(kBrO) J

Nmn(kBR)

(2-m)k,r (2+m+1)k . r
B 0_.2-1 B 0241
_TT§I:IT_Emn (kBro) - TE:ITT7I:§TEmn (kBro)]

® kBr0 9 4
- 2£m2( +1)Emn(k8r0) Mml(kBr)’ (16) i
|
i = ¢ b £ . (k (17)
Lmn (kGR) = E ( arO) Lml Qr) ’

£=m

where r > r0 and

T e LSre—————

> 1 > 3
Mml(ker) curlr hl(ksr)3$¥m2(6,¢)],

(18)

-1 >/

kB le(ker) curl Mml(ker)'
-> > > p

Further, Mml(ker), le(ker) and Lml(kar) are obtained from i

-> > : %
Mml(kBR)’ le(kBR) and ﬁml(kaR)' respectively, by changing

R to r and 0 to 8. The function Eén is defined as ' J

Ep X)) = (2m—l)!!(22+l)jl(x)/xm,
E;'m+l(x) = (2m+l)!!(22+l)[(l—m)jg(x)/wm+l
= Jyeq EVZZL, (19)
Ei’m+2(x) - (2m+3)!!(22+1)[%(l-m)(l—m-l)jz(x)/vm+2

+ mal) {3, 0 /x™ - ey o ™,
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where j2 is the spherical Bessel function of the first kind

and

(2m=1)!! = 1¢3<5 , ., ., «(2m-1); m > 1, (-1)t1t =1,

Similar expressions can be obtained for other values of n.
However, we will not need them here.

From (17) we note that an 1 vector in the (R,0,¢)
system transforms to a sum of I vectors in the (r,0,¢)
system. Similarly, ifm = 0, a M or a N vector transforms
to a sum of M or N vectors. However, ifm # 0, i.e. if the
motion is not symmetric about the polar axis, a M or a N
vector in the (R,6,¢) system transforms to a sum of M vectors
plus a sum of N vectors in t e (r,6,¢) system. Therefore,

a toroidal or a sphercidal motion in the (R,0,¢) system has,
in general, boti the toroidal and spheroidal components in
the (r,8,¢) system.

Once the field has been expressed in the (r,6,¢) system,
the problem of satis{ying the boundary conditions at the
surface of the earth or any parallel boundary, r = constant,
becomes straightfarward. It can be easily seen that if the
primary field is of the toroidal type the secondary field
will also be of the toroidal type. Similarly, for a primary

rield of the spheroidal type we get a secondary field of the

spneroidal type.
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We may summarize the above discussion is follows. (£
the field due to a source with regard to the (R,0,¢) svsten
is axially symmetric and is of the toroidal or spheroidal
type then the total field due to such a source in & radially
heterogeneous earth will be of the toroidal or spheroidal
type, respectively, even when referred to the (r,0,¢) systemn.
But if the field due to the source is not axially symmetric
and is of the toroidal or spheroidal kind with regard to the
(R,9,¢) system, the total field when the source is placed
in a radially heterogeneous earth has both the toroidal and

spheroidal components with regard to the (r,8,¢)

system,

b e s i e i e i
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THE CASE OF SMALL CAVITY

We next assume that the radius of the cavity is small
in comparison with the wavelength under consideration so
that ¢ << 1, ¥ << 1. We can then use the following expansion

of the spherical Hankel function about the origin:

b la), = 1 [xl _ 1 x2,+2
L (22+1) 1! 2 (27+3)

1 1+4
+ 7 T —ETX S Jpe—_—

Y N e sl

+ m%-nmx-2+3 + .oo] . (20)
We shall be considering only such tractions as could be
expressed in terms of the spherical harmonics of degree

2 € 2. Using (9), (13), (14) and (20), we obtain the follow-

ing limiting values for a.gr etc. for 2 £ 2 as 7 and X tend

to zero:

Yoo = “7w @ Kq Poo? e
- a3k E a
m, L 3u 8 m,1’
! .
Bm’l 3 3_u' a kB(bm,l + zcm,l)’ (22)
Y, = (8/m° B :
m,1l m,1l’
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_ i 4. 3

%,2 = T3u 2 ¥ 2,2’
I 1 A+ 2 s 2

Bm,2 = § [9Xf$‘rzﬁ] atkg by o + 3cp H). &%
= 28/ 8

Tm,2 m,2

Inserting the above values in (1) and writing

- e L V) +C
u = z z z U+ Uso (24)
v=c,s8 =1 m=0
we find
*c e LA 3 2.6 e
Yoo = ~7u @ Kq Ppg LggkgR) s (25)
+V R . Y
Yn,l T 3m 2Kg ay,; Mg,y (kgR)
244 22 v v Y
+ £ a kB(bm,l + zcm,l)[Nm,l(kBR)
3 2v
+ (8/@)” L ) (k,R)T, (26)
el _ i 4, 3. v >V
um,2 = % a kB am,2 Mm,z(kBR)

Y 4 »v
Ny, o (kgR) + 2(B/a)" LI ,(k R)]. (27)
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Equation (24) gives the displacement field in an
unbounded medium containing a small spherical cavity, of
radius a, the boundary of which has prescribed surface trac-
tions §(0,¢). Equations (25) to (27) are similar to the
expressions for the displacement field due to various point
sources situated in an infinite medium. We shall derive the
relationship between the seismic moment of a point source
and the tractions at the surface of the cavity so that the
two yield identical radiations. It has been shown by Singh
et al. (1972) that the displacement field due to a point
source in a homogeneous, isotropic, infinite medium may be
expressed in terms of the vectors ﬁ, ﬁ and f. In the follow-
ing, the results for point sources have been taken from

Table 3 of Singh et al. (1972).

(i) Center of compression

A center of compression is equivalent to three equal
mutually perpendicular dipoles. The seismic moment of a
dipole is defined as the product of the force and arm-length.
The seismic moment of a center of compression may be defined
as the seismic moment of any one of the component dipoles
(Aki and Tsai,1972). Let the seismic moment of the center

of compression be Mo. We then have

. 2
iM_ k 4

F = 0B (8. c

t . e (2 ioo(kaR) . (28)
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Comparing (25) and (28), we find

M
e _ .0 u

It is obvious from (11) and (29) that, in this case, the
surface traction is simply a pressure. The relation between
the magnitude of the pressure, pg., and the siesmic moment,

Mo, of the equivalent center of compression is

My = ma® py (A + 21) /u. (30)

This relation has been given earlier by Aki and Tsai (1972).

(ii) Center of rotation

If the rotation is about the z-axis, we have

. 2
> 1M0k8 o
u = - Tr—u-— MOl(kBR). (31)

Comparing with (26), we get

3M
c - . _0
491 = a3 (32

the rest of the coefficients being zero.

Equation (11) shows that, for a center of rotation abnut

the z-axis, of seismic moment Mo,




(111) Single couple

For a couple of momeat MO in the xy-plane with its

forces parallel to the x-axis,

2

qoe - :2§;€-1-6£3L + N5, + 2(%)4532]. (33)
Compaving (26), (27} and (33), we obtain
8Ta
b;z 4 3c;2 = - 4::a3 (9; : éﬁu]. (34)

1f the for:es of the couple are parallel to the y-axis, we

have instecaad

iM, k - 4
A 08 .z 8 B,*»s
4 = Tam [6Mgy + Noy + 2(0) Lol (33)

Bl e oo i o o ok R e o i
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From (34), we get b22 + 3c22, but not b22 and sy
separately. This implies that the solution is not unique.
Corresponding to a given source, we can find more than one
distribution of tractions over the surface of a small
cavity which would yield the same radiations as the given
source. This lack of uniqueness is obviously caused by
the limiting process. For a cavity of radius which may
not be small, we have seen in (7), (8) and (13) that a
given displacement field gives a definite stress field on
the surface of the cavity and, conversely, corresponding to
a given distribution of stresses at the surface of the

cavity, there is a definite unique displacement field.

(iv) Double couple

Defining a double couple of seismic moment M, in the
xy-plane as the sum of the two single couples whose dis-

placement fields are given by (33) and (35), we have

> iM0k82 s B.4 s
a = - = [ﬁzz . 2(3) izzl, (36)
and
bS  + 3¢S - My 9A 4+ l4u]. (37)
22 22 anad U X ¥ 20




(v) Dipole
For a dipole
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Wwe have obtained above tractions or a set of tractions

which when applied over the surface of a small cavity in an

infinite medium give the same field as radiated by a point

source in an infinite medium in the absence of the cavity.




RELEASE OF STRESS IN A SPHERICAL ZONE

Consider a homogeneous, isotropic, elastic, prestressed
medium. Suppose that the stress is released within a spherical
zone of radius a. Our aim is to calculate the additional
displacement field caused by the release of the pre-existing
stress. Denote the initial radial stress vector at any

point by %RO and let

T0 = -Fle,4) at R = a. (42)
If the additional displacement field is expressed as in (1)

and the corresponding stress vector as in (7), then we must

have

7fR+$R° = 0 at R = a. (43)
Equations (42) and (43) yield
2 = -%0 - F,) at R = a. (44)

Comparing (10) and (44) we note that the additional field

due to the release of the stress in a spherical zone is

identical with the field due to a spherical cavity in an

infinite medium with prescribed surface tractions.




Consequently, we can use here the results derived before
for a spherical cavity, including those for a cavity of
small radius.

Consider the case in which the initial stress is a
simple tension of magnitude Tg parallel to the axis of x.

We have

Equations (42) and (45) yield

Fle.) B

(6 .8 )¢
To'°r x’®x

To sin® cos¢$ (sinO® cos¢ ER

+ cos@ cosd EO - sing E¢)

1 ] C ']

— D e s
- V6 Egz + 5/8 §22]

using (5). Comparing (11) and (46), we get




c:erts not mentiorned are zero. Inserting into

(S8

. -

(13), one finds the coefficients Sy etc.

S5 = T TGS, T,
(S o~ TO ram - 1
502 -61.—-}(?&-2-‘2.2,;(5) F2’3(C)Jr
c _ _ igc
B2 = ~ F802¢
(48)
T
(c B 0
Yoo T Bk A, Fg,2 X
c T0
Yoz = EW;I—Z'L6-2 l(X) Fa Z(X)]r
C I
Yo = 7702
Inserting intc (i), we obtain the displacement field
due to the stress release
> .C ,2C _ lacC c 2C
u 502 g2 = 322) * Yoo¥oo
c .aC 22C

Once again, we consider the case when the radius of the
spnerical zone, a, is small in comparison with the wave-
length of interest. Therefore, § << 1, x << 1, and (9),

(26), and (48) yield

{147,
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c _ 5i 230 2 + 2
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Equation (49) now becomes

* . -
% 1Zu Tokg 2 [Q'T_IT+ uJ[ZNoz N22

Comparing the last equation with (28) and (40), we note
that the displacement field (51) is identical with the field

due to a dipole in the x-direction of seismic moment

= 3 A+ 2u )
Mo = 20maTty gk iay) (32)

Plus a center of compression of seismic moment

= 3 (A + 2u) (32 - 2y)

We thus see that the displacement field due to the
release of a pre-existing stress, in the form of simpie
tension Ty parallel to the x-axis, within a small spherical

zone, 1s identical with the disp.acement field due to a




tens.on dipoie in the x-direction and a center of compres-
sion. Similarly, if the pre-existing stress is a simple
pressure in the y-direction, the equivalent force system

is a pressure dipole in the y-direction plus a center of
dilatatior. Cormbining the two results, we .ind that if the

initicl stress is a tension 1, in the x-direction plus a

0
pressure T, in the y-direction, the equivalent force system
.s a tension dipole in the x-direction together with a
pressure dipnle in the y-direction, each of seismic moment
¥, given by (52).

Suppose a new coordinate system (x',y',z') is obtained

by rotating the (x,y,z) system about the z-axis through an

angle -r/4. 1In that case

3. = @ -2/,
(54)
éy. = (éx + ay)//’z.
This yields
-x x T €yey = €€, + €€yt (55)

Tne iast result shows that a tension Ty in the x-direction
and a pressure T in the y-direction are equivalent to a
shear Ty with reference to the x'y' directions. Further,

~& XooW taat a tension cdipoie M, and a pressure dipole My

0
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acting along mutually perpendicular directions are together
equivalent to a double couple Mo. we, therefore, conclude
that the displacement field due to the release of pre-
existing shearing stress To within a small spherical zone
of radius a is identical with the displacement field due

to a double couple of seismic moment MO' where

1 3 A+ 2
Mo = 20ma TO[-QT_TTHTJ-} 0 (56)

This result could have been derived directly by assuming an
initial stress of the form
0 0 0 0 0 0

Ty = Tor Txx = Tyy - Tzz = Tyz = Tax = 0. (57)

For the Poisson case (A = u), (56) becomes

My = g%na%o. (58)

Equation (58) has beern obtained earlier by Aki et al. (1969)
and by Aki and Tsai (1972), beginning with the results of
icnda (1960, 1962). Since Honda gives only the far-field
displacements, Aki et al. (1969) and Aki and Tsai (1972)

state that relation (58) holds only for the far-field. How-

ever, ac we nave seern above, the relationship applies for
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the total exact-field. The only ac<sumption is that the

radius of the spnerical zone is small, in comparison with

the wavelength under consideration.
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2.5 On the Disturbance Due to a Spherical Distortional Pulse

in _an Elastic Medium by S.J. Singh and M. Rosenman#

(Abstract)

Theoretical expressions are derived for the displace-
ment, velocity and stress in the time domain induced by an
axially symmetric shearing stress applied at the inner sur-
face of a spherical cavity in a homogeneous, isotropic,
elastic medium of infinite extent. Theoretical seismograms
are computed for a step source and for three sources with
exponential decay in time. A satisfactory time-dependence
of the source can be obtained by combining the step source

with one cr mcre exponentially decaying sources.

* Address: Department of Geology, Harvard University,

Cambridge, Massachusetts.

2.6 A Spherical Cavity in a Micropolar Elastic Medium and

Related Problems, by S.J. Singh (Abstract)

The problem of a spherical cavity in an infinite,
linear, isotrupic, micropolar elastic medium is considered.
The spectral displacement and stress fields are obtained
when arbitrary tractions and couples are prescribed over

the surface of the cavity. It is found that, as in the

elastic case, the original problem splits into two

T R e T . TR G R - [Tt [ e T L L [y wm—
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independent problems corresponding to spheroidal and tor-
oidal motions, respectively. In the case of purely radial
static or dynamic displacements, there is no microrotation.
The solutions of such micropolar elastic problems can be

obtained from the corresponding elastic solutions on re-

placing u by u + %K. This correspondence principle is i
used to derive the micropolar-elastic solutions of several

problems involving radial displacements only.

2.7 Quasi-Static Deformation of a Viscoelastic Half-Space

by a Displacement Dislocation by S.H. Singh and

M. Rosenman (Abstract)

The correspondence principle is used to get the Laplace

transformed solution of the problem of the guasi-static
deformation of a viscoelastic half-space by a shear dis-
placement dislocation from the corresponding elastic results.
The transformed solution is inverted for the Voigt and the
Maxwell viscoelastic models. It is shown that, for a verti-
cal dip-slip fault, the surface displacements for the visco-
elastic case are identical with the elast:c displacements.
In the case of a vertical strike-slip fault, detailed
numerical results are obtained for both a point source and

a finite rectangular source. It is found that the results

for the viscoelastic models differ significantly from the

corresponding elastic results.
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Quasi-Static Strains and Tilts Due to Faulting in a

Viscoelastic Half-space by M. Rosenman and S.J. Singh

(Abstract)

Recently derived quasi-static surface displacements
resulting from a finite rectangular vertical strike-slip
fault in a viscoelastic half-space are used to derive
the surface strains and tilts for both Voigt and Maxwell
viscoelastic models. Contour maps are obtained for various
strain and tilt components. The variation with time and
epicentral distance is studied in some representative cases.
Detailed numerical calculations reveal significant differences

between the viscoelastic and the elastic results in the case

of a vertical strike-slip fault. This contrasts with the

results for a vertical dip-slip fault in a uniform half-
space, where the surface strains and tilts for the visco-

elastic and the elastic models are identical.




EARTH STRUCTURE AND PATH EFFECTS

3.1 Regionalized Earth Models from Linear Programming

Methods by C.E. Johnson (Abstract)

This study is concerned with the development of pos-
sible models of the internal structure of the earth con-
sistent with a given set of observed data. A two-stage
linear programming procedure was used together with an
assumed parameterization to obtain an explicit envelope
of possible shear velocity and density values in the mantle
and core. This envelope is determined separately for oceanic,
shield, and tectonic regions of the upper mantle. The data
used in this study consist of the mass and moment of inertia
of the earth, periods of free oscillations, including re-
cently available overtones, regionalized phase and group
velocities of Rayleigh waves, and phase velocities of Love
waves. The results constrain the variations of density and
shear velocity in the lower mantle to within about 1.5%
from the center of the envelope. The density just below
the mantle-core boundary was found to lie between 9.79 and
9.86 grams/cc. A rigid core was needed to satisfy the over-
tone data with a shear velocity between 3.35 and 3.52 km/sec.

The radius of the mantle-core boundary was found to lie be-

tween 3476.38 and 3486.42 kilometers. Excellent agreement
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with recent travel time studies of body waves was found for
shear velocity in the lower mantle and for the radius of
the mantle-core boundary. Geophysical and petrological

interpretations based on these results are discussed.

3.2 Range of Earth Structure Nonuniqueness Implied

by Body Wave Observations by R.A. Wiggins, G.A. McMechan

and M.N. Toksd#z (Abstract)

The Herglotz-Wiechert integral for the direct
inversion of ray parameter versus distance curves can be
manipulated to find the envelope of all possible models
consistent with geometrical body wave observations
(travel time and ray parameter versus distance). Such
an extremal inversion approach has been used to find
the uncertainty bounds for the velocity structure in
the mantle and core. We find, for example, that there
is an uncertainty of *40 km in the radius of the inner
core boundary, +18 km at the core-mantle boundary, and
+35 km at the 435-km transition zone. The velocity
uncertainty is about *0.08 km/sec for P and S waves in
the lower mantle and about *0.20 km/sec in the core.
Experiments with various combinations of ray tapes in

the core indicate that rather crude observations of

SKKS-SKS travel times confine the range of possible
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models far more dramatically than do the most precise
estimates of PmKP travel times. Comparisons of results
from extremal inversion and linearized perturbation
inversions indicate that body wave behavior is too
strongly nonlinear for linearized schemes to be effective

for predicting uncertainty.

3.3 A Travel-Time Study Using Deep-Focus Earthquakes

by M.K. Sengupta (Abstract)

Revision of the Jeffreys-Bullen (J-B) tables has been
made from the analysis of travel-times of deep earthquakes.
Deep events (450 to 600 km) were used in order to avoid
the source bias caused by a downgoing slab. The absolute
values of travel-times have been determined from the
Nevada Test Site explosion data for which the upper mantle
velocity structure near the source is known and could be
corrected for.

In this analysis, station errors and the systematic
error of the J-B tables are, in general, similar to
other works. However, a smaller scattering of the data
suggests that the results of this study may be more
reliable. Prediction of travel-times from deep events,
barring a d.c. term, could be made from our times and

station corrections with an error comparable to the reading

error.
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Residual sphere plots of data suggest that anomalous,
high velocity structures of the mantle beneath island
arcs might exist even beyond the region of deep earth-
quakes (e.g., in the Solomon islands). Also, there is a
suggestion of lateral heterogeneity at the deep mantle as
evidenced from these plots and the anomalous travel-time
variations between different source zones beyond 80°
of distance. Stations in western North America were
found to show different residuals for different source
regions in different azimuths reflecting a complicated

velocity structure underneath the stations.

3.4 Seismic Travel-Time Evidence for Lateral Inhomogeneity

in the Deep Mantle by B.R. Julian and M.K. Sengupta

(Abstract)

Regional variations in travel times at distances
greater than about 70° have been found in a study of
P waves from deep focus earthquakes. These data can be
explained satisfactorily only in terms of large-scale
lateral heterogeneity in the lowest few hundred km of
the mantle, this region being more heterogenous than
that which lies above it. The travel time varies by
more than a second, indicating at least a 1% variation
in the P wave velocity in the deep mantle. Among other

results, the data indicate a pronounced lateral variation




beneath the Hawaiian islands, the velocities being high

to the northwest of Hawaii and low in the vicinity of
the islands. It also appears that low velocities may
be characteristic of island arcs at depths greater than

1000 km.

3.5 Scattering of P Waves Under the Montana LASA

by K. Aki (Abstract)

The variations of amplitude and time-delay of tele-
seismic P waves across the Montana LASA were interpreted
as due to scattering by a random inhomogeneity in the
earth's crust under the array. The prediction of the
Chernov theory explains well the observed statistical
properties of P waves with frequency 0.5 cps. The in-
homogeneity under LASA has a correlation distance of about
10 km, with a fractional RMS velocity fluctuation of
4%, extending to a depth of about 60 km. The turbidity
coefficient under LASA at 0.5 cps is 0.008 km-l, which

is much greater than the values (10-3 v 10-'4km_l at 5 7

10
cps) observed for refracted waves in the crust and upper
mantle in the U.S.S.R. by Nikolayev and his colleagues.

The ééattering under LASA is so strong that the condition

for the Born 1ipproximation is violated for frequencies

higher than 0.5 cps. Accordingly, the observed statistical

properties of 1 cps waves show systematic departure from
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the prediction of the Chernov theory.

3.6 Shear-Wave Attenuation cnd Melting Beneath the

Mid-Atlantic Ridge by S.C. Solomon

Summary

Because the attenuation of seismic waves is sensitive
to variations in temperature and to partial melting, the
mapping of seismic Q beneath the mid-ocean ridge systems
is a useful tool to outline boundaries between lithosphere
and asthenosphere and to constrain the mechanics of the
intrusion process. Our approach is to measure the differ-
ential attenuation of long-period shear waves, using a
spectral ratio technique, from earthquakes on the ridge
and to look for variations in attenuation with propagation
direction. We correct for proprgation distance and, where
Known, the upper mantle attenuation beneath the receiving
stations.

The azimuthal dependence of attenuation of S waves
from an earthquake offset from the ridge axis on a trans-
form fault indicates the existence of a low-Q zone, no
wider than 100 km and confined to depths shallower than
about 100 to 150 km, beneath the crest of the mid-Atlantic
ridge. The absence of appreciable azimuthal variation in
shear-wave attenuation for an earthquake on the ridge

crest suggests that the low-Q zone is at least 50 km wide.
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Q within such a zone must be 10 or less for long-period
S waves. The most likely explanation of such a low-Q
zone of limited spatial extent and with sharply defined
boundaries is that the zone is a region of extensive
partial melting, probably at temperatures in excess of
the anhydrous solidus of mantle material. Such a region
of large melt concentration is consistent with the

chemistry of rocks from the mid-ocean ridges and with

models of the temperature field derived from numerical

calculations of flow beneath spreading centers.
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INTRODUCTION

The upper mantle bencath mid-ocean ridges and other
spreading centers is anomalously hot, most likely because
the ascending limb of some form of convection cell is
centered more or less beneath the ridge axis. Portions of
the mantle beneath a spreading ridge must further be par-
tially molten, if for no other reason than to segregate
the basaltic magmas needed to form the oceanic crust. High
temperatures and partial melting can have a profound effect
on the velocity of seismic-wave propagation and especially
on the seismic attenuation or the quality factor Q. Beneath
mid-ocean ridges, a zone of unusually low velocity and low
Q extends approximately from the base of the crust [Le Pichon

et al., 1965; Molnar and Oliver, 1969; Keen and Tramontini,

1970], at least in the immediate vicinity of the ridge crest,
to several hundred kilometers depth [Francis, 1969; Knopoff
et al., 1970; Weidner, 1972; Forsyth, 1972; Taylor, 1972}.
This zone is corswonly identified with a partially molten
asthenosphere, whose accentuated features and shallow top

are a conscgquence of the elevation of isotherms by convective
upwelling.

Bettoer quantitative information on the spatial variation
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of Q beneath spreading mid-ocean ridges can therefore serve
as a valuable constraint on the mantie temperature field and
the process of lithosphere generation. While the most de-
tailed such information will probably result from short-
range refroction experiments using ocean-bottom sensois,

we are limited at present to land-based observations. The
approach in this paper will be to measure the amplitude
spectra of long-period, teleseismic shear waves generated by
carthquakes on a mid-ocean ridge, to look for changes in the
differential attenuation of the waves with propagation direc-
tion, and to relate such changes to spatial variations of Q
beneath the ridge. The most important result of this study
is the striking evidence for a narrow, shallow region of

very low Q lying beneath the crest of the mid-Atlantic ridge.
This low-Q zone is clearly associated with melting, and
probably represents the region in which temperatures exceed

the dry solidus of mantle material.

SOURCE OF DATA

We shall present in this paper the differential attenu-

ation of & waves from two earthquakes on the mid-Atlantic

ridge. All data for this work are taken from recordings on




horizontal, long-period scismometers of the World-Wide
Standard Seismograph Network. The mid-ocean ridge in the
north Atlantic is an ideal spreading center to be studied
using teleseismic body waves because of the excellent azi-
muthal coverage of standard stations. Pertinent information
on the two earthquakes trecated is given in Table 1. Their
epicenters are shown superimposed on a seismicity map for
the north Atlantic in Figure 1.

The earthquake of 2 June 1965 was located on the crest
of the mid-Atlantic ridge. The focal mechanism is one of
normal faulting, with the inferred tensional pre-stress
axis approximately horizontal and perpendicular to the
strike of the ridge [Sykes, 1970a]. We shall contrast below
the attenuation of shear waves that have propagated more
nearly parallel to the ridge axis with those that propa-
gated roughly perpendicular to the axis. Of some note is

the castward offset in the ridge crest immediately to the

south of the epicenter. Further mention will be made of
this point later.

The carthquake of 13 February 1967 was located on the
Gibbs fracture zone, a prominent transform fault that offsets

two portions of the mid-Atlantic ridge crest by over 3450 km

(leming ot al., 1970]. 'The focal mechanism derived from

: P-wave lirst motions is shown in Figure 2; clearly right-
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lateral strike-slip motion on a nearly vertical fault is
indicated. The strike of the east-west nodal plane is

identical to the strike of the fracture zone [Fleming et al.,

1970]). The carthquake epicenter is roughly 60 km east of

the northern ridge crest segment. We shall pay particular
attention below to the contrast in attenuation between shear
waves that have propagated beneath the ridge crest and those
that have traveled beneath the older ocean floor to the south.
We might remark that the Gibbs fracture zone is somewhat unu-
sual. It is actually a double fracture zone and apparently
marks a boundary between regions with slightly different

spreading directions [Fleming et al., 1970]. Added to the

confusion is that spreading directions predicted for this
region of the north Atlantic from Europe-North American
spreading poles [Le Pichon, 1968; Chase, 1972] do not match

the trend of the fracture zone, though these two determinations

of spreading direction differ by 17 degrees and bracket the

strike direction of the transform fault.
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DIFFERENTIAL ATTENUATION

nacquound

A seismic signal contains informat.on on both the
source of the signal and the medium through which it has
propagated. To isolate the effect of seismic attenuation,
we appeal to the technique of body-wave equalization [Ben-

Menahem et al., 1965), which has been used in assorted forms

to study attenuation phenomena with a fair degree of success

[Teng, 1968; Solomon and_Toksd#z, 1970; and several others].

The problem is simplified to a point source in an ea~th
tor which geometric ray theory and linear elasticity and
anelasticity are valid. Then the observed amplitude spec-
trum of an isola‘ed body wave from an earthquake may be

written:

A(E) = s(f) R(D,4) Ap (f) AL (f) (1)

where 8§ is the amplitude spectrum at the source, R is
the radiation pattern, a function of propagation direction
(0,4, Ap is the transfer function for propagation through
the carth and AI is the transfer function for the instru-

ment. By geometric ray theory we can factor Ap(f) as

follows:<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>